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ABSTRACT

vs

PROCESSING SYSTEMS OPTIMIZATION THROUGH AUTOMATIC DESIGN AND
REORGANIZATION OF PROGRAM MODULES'

J.F. Nunamaker, Jr., W.C. Nylin, Jr., and Benn Konsynski

A methodology is described for the automatic design of a
processing system initially defined in terms of logical pro-
cesses or program modules. Processes and files are grouped and
reorganized in such a way as to produce an optimal design with
respect to a specific target machine. Performance criteria
for the optimal design is defined in terms of transport volume
savings and core memory requirements.

Starting with a graph theoretic representation of.the inter-
action between processes (or modules) and files,'the methodology
consists of two components:(1) a generator of feasible alterna-
tives and (2) a procedure for reorganization and code generation
for specific groupings. The generator for the feasible alterna-
tives uses an implicit enumeration algorithm to optimize process
groupings in an efficient manner. The objective is to group
processes into modules which minimize the interaction between
modules while still satisfying the logical requirements of the
program and the physical constraints of the hardware. Finally,
after the program modules have been specified, program and file
reorganization will be performed to further optimize the design.
Reorganization includes the combination of similar data passes
on the same file to minimize transport volume and the merging
of loops to enable elimination of code and of intermediate
data files.

The code generator will then accept the optimal program
design and produce an optimized source language program for

the target machine. Consequently, not only can an optimal
design for the processing system be generated; but due to
reorganization techniques, the resultant modules (defined
from specific process groupings) may approach the computational
efficiency expected of an integrated program.
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I. INTRODUCTION
airy Irma

It is recognized that perhaps the single most important problem

which faces a computer user is that of conversion of programs to

another machine. This is true even for programs written in "machine

independent", high-level source languages.. Changes in the system

configuration; e.g., hardware, operating system, or file structure,

may have altered the operating environment significantly so that the

programs no longer take advantage of the strength of the configuration.

For whatever reasons that make the conversion necessary, such as

the replacement of an obsolete machine or the requirement to run the

program on additional machines, the situation is applicable to many

users. It is also recognized that many users have considered auto-

matic conversion of computer programs with techniques such as emula-

tion and simulation. However, very few users have seriously attacked

the problem of the optimal reorganization and design of the program

when moving it from one machine to another.

Many users are of the opinion that anything less than 100%

automatic conversion is not worth considering; however, it can be

stated emphatically that less-than-complete conversion tools are

useful and the redesign and reorganization are necessary for effi-

cient operation of the resulting program modules.

The transferability problem touches on all aspects of software

design; specific methodology from decompiling, graph models of pro-

grams, operations research search techniques, and problem statement

languages are used to form an approach to the problem.

5
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II. METHODOLOGY

What is needed is a methodology for converting, redesigning, and

reorganizing programs from one machine to another as a result of

stated performance criteria.

This paper discusses a software system for the design and re-

organization of computer programs, and a methodology is described

for the automatic design of a processing system initially defined

in terms of logical processes or program modules. Processes and

files are grouped and reorganized in such a way as to produce an

optimal design with respect to a specific target machine. Perform-

ande criteria for the optimal design are defined in terms of transport

volume savings, core memory requirements, and input/output requirements.

Transport volume of a system is a measure of performance that

is related to total processing time. Processing time is a non-

. decreasing function of transport volume; therefore, it is desirable

to decrease the transport volume of a set of program modules. It

was shown by Nunamaker [1,2] that there exists a class of process

groupings which result in a reduction of transport volume when two

or more processes are grouped. Using a simple case as an example,

the transport volume is reduced when two processes are grouped if

the-output of one is the input to the other process. As a result

of the grouping of the processes into a composite program module,

the core requirement will be increased and the input/output require-

ments of the system maybe affected.

In this paper the assumption is made that we are starting with

a well-defined problem, and that the set of processes can be described

in terms of a directed graph. In addition, we know other information

such as frequency, volumes, etc.

Building on the graph theory representation of the interaction

between processes (or modules) and files, the methodology consists of

two components: CO a generator of feasible alternatives and (2) a

procedure for reorganization and code generation for specific groupings.

The generator for the feasible alternatives uses an implicit enumera-

tion algorithm to generate alternative groupings in an efficient man-

ner. The objective is to group processes into modules which minimize

the interaction between modulewhilli still satisfying the logical
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requirem'ents of the program and the physical constraints of the hard-

ware. Finally, after the program modules have been specified, program

and file reorganization will be performed to further optimize the

design. Reorganization includes the combination of similar data passes

on the same file to minimize transport volume and the merging of loops

to enable elimination of code and intermediate data files.

The Program Module Generator presents a very large set of feasible

program modules for the target machines; it is the task of the selec-

tion algorithm and the reorganizer to construct a reasonably good set

of program modules. The code generator then accepts the optimal

program design and creates the optimized physical code for the target

machine. Thus, the Program Module Generator chooses from among all

conceivable combinations of processes for program modules and selects

the "best" design after considerable interaction with the program

reorganizer.

Consequently, not only can an optimal design for the processing

system be generated, but due to reorganization techniques, the're-

sultant modules (defined from specific process groupings) may approach

the computational efficiency expected of an integrated program.

An overview of the :methodology for the automatic design and re-

organization of program modules is shown in Figure 1. The specific

subject of this paper begins with the assumption that a Problem

Definition exists and is shown below the dotted line in Figure 1.

The problem definition, generation, and translation into a problem

statement is the subject of another paper [2].

III. DEFINITIONS

A programming system, PS = (PR,F,T,E), is defined as a set of

processes (PR), files (F) , the control flow of the fileS(T), and the

relationships of the set of processes and files (E). These defini-

tions are extensions of the work of Langefors [3] and Briggs [4].

pr Process--A well-defined task representing a pass over one

or more data files; where PR....(pr,,pr2, prn).

f File--The data input or output of a process; where

Ihtl(f f ).
1

f2,
k

7
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T Control Flow Matrix--The control flow precedence relationship

of the programming system.

tili'li-EcontrolflowcanpassdirectlYfromf.1 to

t.. = 0 otherwise.
13

E - Incidence Matrix--Processes and files.

if f, is an input to pri.

if f, is an output of pri.

if there is no incidence between fj and pri.

The control flow of a network is described by T, and the data

relationship of the processes and files in a network is described

by E.

e
ij

= 1

e
ij

= -1

eij = 0

From the Incidence Matrix we can define the concept of transport

volume. Transport volume is one component of the performance criteria

which are used to evaluate alternative program module design. Per-

formance criteria for program module design is a function of the fol.-

lowing compcnents: (1) processing time, (2) transport volume, (3) core

size, and (4) the number and type of input/output units required.

Let v,
3
be the volume of file f ; Qi, the number of logical inputs

and outputs of pr.; and mpj, the multiplicity of file transport for fj.

Thus mp represents the number of times f, is an input or output of a

set of processes; cmi represents the core memory required by pri.

R
i

= ; = 1,2,...,n.
j=1 13

mP. = le..I j =
3 i=1 13

The transport volume for f, is.,

tvj = mpj vj.

The transport volume for the set of data files is:

Let pri

S

TV = tv4

j=1

represented by a and fi by a. c
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The Incidence Matrix (E) and the associated incidence graph for a

programming system of six processes and ten files is shown in Figure 2.

a b c d e'

Files

e" f' f h
i

cm

A -1 1 0 1 0 0 0 0 0 0 3 30

0 -1 0 0 1 0 0 0 0 0 2 10

0 0 -1 0 0 1 0 0 0 0 2 15

o D o o 0 -1 0 0 1 0 0 1 3 20

0 0 0 0 -1 -1 0 1 0 0 3 10

0. 0 0 0 0 0 -1 -1 1 0 3 10

mp . 1 2 1 2 2 2 2 2 1 1
3v. 30 10 20 50 10 10 10 20 30 50
3

tv, 30 20 20. 100 20 20 20 40 30 50
3

Figure 2. Incidence Graph and Matrix. E for a programming system
of 6 processes and 10 files.

This example is also used later in Section VII.

We now must define additional matrices needed for the grouping

procedure.

10
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The E matrix of processes and files is used to generate the data

flow Precedence Matrix of processes P. Note that a distinction is

made between the control flow T of the programming system and the

precedence relationship of the processes with respect to data flow.

P - Precedence Matrix: Processes

pij = 1 if pri is a direct precedent of pry

pij = 0 if otherwise.

P can be reconstructed from E as follows:

pij = 1 if and only if 3 k 3 eit = -1 and eit = 1.

The Precedence Matrix (P) of processes for the example of Figure 2

is shown in Figure 3.

A BCDE F

A 0 0 0 0 0 0

1 0 0 0 0 0

C 0 0 0 0 0 0

D 1 0 0 0 0 0

E 0 1 1 0 0 0

F 0 0 0 1 1 0

Figure 3. Precedence Matrix of Processes P.

The R, R*, and G matrices are .generated for the entire set of

Processes.

R ReachabilitY Matrix: Processes

The R matrix is used to check precedence violations in the

grouping procedure

R = P V P2V....V Pq-1

where q is the index of the nilpotent matrix Pt i.e., when Pq = 0.

rij =1 if pri has any precedence relationship with pr

rij = 0 otherwise.
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The Reachability Matrix (R) of Processes for the example of

Figure 2 is shown in Figure 4.

A-13 C D E F

A 000000
B 1 0 0 0 0 0

C 0 0 0 0 0 0

D100000
E 1 1 1 0 0 0

F 1 1 1 1 1 0

Figure 4. Reachability Matrix of Processes R.

R* - Partial Reachability Matrix: Processes

The R* matrix is used to calculate the G Matrix.

R* = P2 V P3 V....V Pc1-1

r*ij = 1 if pr. has a higher (2 or more) order precedence

with prj.

r*.. = 0 otherwise.
ij

The Partial Reachability Matrix (R*) of Processes for the example

of Figure 2 is shown in Figure

ABCDEF
5.

000000
B 000000
C 000000
D 000000
E 100000
F 111000

Figure 5. Partial Reachability Matrix of Processes R*.

12
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G Feasible Process Pairs Grou in Matrix: Processes

If gij = -1, there exists higher (2 or more) order relationships

between pri and prj; and pri cannot be combined with prj. If gij = 0,

there is no precedence ordering; and pri can be combined with prj.

This indicates a feasible but not necessarily profitable grouping. If

gij = 1, there is either a direct precedence relationship, and pri can

and should be combined with pr since this indicates a feasible and

profitable grouping; or there is an immediate reduction in logical

input/output requirements when pri.and prj are grouped.

= -1 if r*
ij

or r*
ji

= 1 or i=j.
gij

gij = 0 if r*ij =0 and r*ji = 0 and pij = 0 and pji = 0; except

when (piel and pjx=1) or (p94=1 and pitj=1).

= 1 if r*
ij

= 0 and r*
ji ij

= 0 and [(p=1) or (p =1) or

(pit=1 and pjel) or (p9,j=1 and ppa=1)] .

pr
2,

has a first order precedence or succedence rela-

tionship with pri and prj.

The Feasible Process Pairs Grouping Matrix (G) for the example

of Figure 2 is shown in Figure 6.

9

glj..

A B C D E F

A -1 1 0 1 -1 -1

B 1 -1 1 1 1 -1

0 1 -1 0 1 -1

D 1 1 0 -1 1 1

E :1 1 1 1 -1 1

F -1 -1 -1 1 1 1

Figure 6. Feasible Process Pairs Grouping Matrix G.

A list of all feasible pairs for grouping of processes is don- .

structed from the G Matrix and passed to the generator of alternative

groupings.
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It is known that by grouping processes into a composite process

called a program module, the multiple input and output of files can be

reduced. A program module PMi is created by combining and reorganizing

processes pr. , pr. , OW/ pr. . Let Lo be the source language; L1,
1 12 lk

the intermediate language; and L2, the target language. Not that a

situation m-y exist in which a single language could serve as Lo, Ll,

and L2.

Define procedure RG which maps processes in language L0 into re-

organized modules in language Ll. RG performs the following tasks:

1. Conversion of the individual processes from L0 to L1 if Lo # Li.

2. Transformation of the processes written in L1 into a syntactically

and logically correct module in L2.

3. Reorganization of the module.

Thus, one can define a program module PMi using RG.

PIC=RG(pr. ...., pr ) is a feasible program module if
11 i

sPR,1<j<krand.PM1 satisfies all the constraints for a valid

subprogram in language L for the target machine. Thus, a feasible

program module must satisfy the core memory and logical constraints of

the program.

M. = {pr. , p . , pr
1 2

feasible program module.

6 = {M1, M2, Mcps a cover for the programming system PS if:

i) Mi, 1<i<g is a feasible grouping.

ii) M
1
U M

2
U...0 Mg = PR.

iii) m = 0 for i# j V j<q, j<i, i<q.

Note that PMi = 110(pri) must be a feasible module for kiln for

a cover for PS to exist. We can now define the set of all possible

covers (A) for PS. (i.e. A = (616 is a cover of PS) )

} is a feasible grouping if PMi is a

14
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IV. PROCESS GROUPING CONCEPT

In generating an efficient design, it is necessary to decrease

the transport volume (total number of characters read in and written

out of main memory) in order to reduce the processing time. If file

volumes remain constant, in order to decrease the transport volume,

the multiplicity (the number of times a file is input and output) of

file transport must be decreased. After the Program Modules are

specified, the files are consolidated for the purpo of reducing the

number of input/output files required and for better utilization of

storage in auxiliary memory. Process grouping is shown to correspond

to a grouping of rows of the Incidence Matrix, and file consolidation

is shown to correspond to a grouping of coluins.

Program module design is concerned with the reduction of pro-

cessing time and can be summarized by the two methods by which the

processing time can be reduced. The generator of alternatives deter-.

mines which opqrations (Processes) will be grouped into Program Modules:

1. Group Processes which eliminate the writing out and the reading

in of a file. Consider the example in which the output of one

process is the input to another process, as shown in Figure 7.

Figure 7. The output fa if' prA is the input to prs.

The transport volume of fa is eliminated when prA and prs are grouped

as shown in F!:ure 8.

ntr3

Figure 8. Grouping of prA and prs of Figure 7.

15
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2. Group Processes which require the same file as shown in Figure 9.

Figure 9. prA and prB read a common input file fc.

The transport volume is reduced when prA and prB are grouped since Fr,

is read only once as shown in Figure 10.

Figure 10. Grollping of prA and prB of Figure 9.

It may be'profitable also to group fa and fb as shown in Figure 11.

Figure 11. Grouping of fa and fb of Figure 10.

he objectiVe is to reduce total transport volume and thus total

processing time.

The concept of process grouping is illustrated with the example

from section VII of the paper and the Incidence Matrix and graph for

the example is shown in Figure 2. The transport volume TV for the

example is 350 units, the core memory required is 30 units, and the

maximum inout/output requirement for any process is 3. The crucial

items in determining which processes to group into modules are the

transport volume and main memory size. It is desirable to produce

modules (subject to the memory constraint) minimizing the transport

volume for the programming system.

16



Consider as an alternative design combining prA, prB, and prc

into one program module and prD, prE, and piF into a second program

module. The resulting transport volume TV is 270, the core memory

will be no larger than 55 units, and the maximum number of input/

output processes for each program module has increased to 5. This

alternative design is shown in Figure 12.

a c d e' e" g h R cm
i

M 0 -1 -1 -1 1 1 5 40

M
2

-1 1 1 1 0 0

I0

5 .55

mp . 1 2 2 2 1 1
3

v. 30 20 50 10 10 30 50
3

tvj 30 20 100 20 20 30 50

Figure 12. Grouping Processes of Figure 2 into two Program Modules.

Thetransport volume for the example of Figure 2 has been reduced

from 350 units to 270 units, the core requirement has increased from

30 units to 55 units for program module size and the maximum input/

output requirement has increased from 3 to 5.

Several assumptions are made in the graphical representation of

the processes and files. Control flow over a file is assumed to exist

for any process. Multiple data passes over an input and output file

as illustrated in Figure 13 are shown as follows in Figure 14 for the

computation of transport volume.
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Figure 13. Multiple data passes over an input file and output file.

Figure 14. Graphical representation of the examples of Figure 13 for
the purpose of computing transport volume.

In other words, an element of file "a" is read and an element of

file "b" is written. Control then reads the next element of "a" and

writes the next element of "b". Therefore, cycles within a process

are not shown in the Incidence Graph, but are assumed to exist in the

Incidence Graph and are shown in the control flow graph.

In addition, the situation may exist in which control flow actually

passes completely from file "a" to file "b". This is the case when the

entire file "a" is read before file "b" is written. For example, the

process may involve a sort on file "a", or a complete read of file "a"

may be required to compute various sums that are dependent on the con-

tent of file "a".

Both cases are represented as having the same incidence matrix

for purposes of computing the transport volume. The T or control flow

matrix reflects occurrences of multiple data passes over a file.

The P matrix and E matrix are the same for both cases and the T

matrix is different. This is illustrated as follows in Figure 15.

It can be noted that although the transport volume for specific

files has been eliminated by the grouping, storage (in main memory)

for the information contained in those files is still necessary. It

is the purpose of reorganization to automatically restructure the

combined processes towards the reduction of the number of loops over

that information and thus possibly eliminate the need to maintain it

18
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a b c

a 0 1 1

b 0 0 0

1 0 0

A B

A F T
0 0

A -1 0 1

B B 1 -1 0

a b c

a
b

T

a b c

0 1 0
0 0 0
1 0 0

A B

A F01-
B 00

E

a b c

A
B

-1
1

0

-1
1

.0

Figure 15. Illustration of the usefulness of the T Matrix.

between two data passes. This can be a:complished by restructuring

the loops (consecutive data'passes) in an attempt to provide only one

loop over the original data fii.e. Consequently, only a specific record

of that information file may need to exist for each pass through the

merged loop. That is, the information in that record could be computed

and used by the same pass, and no longer be necessary upon completion

of that pass. Such is the case in the example presented in Figure 2

and described in a later section in which the combination and reorgani-

zation of processes E and F allow for the elimination of the Customer

Transaction File f".

A record of the Warehouse Transaction File g was used to compute

each record in the Customer Transaction File f". Similarly, a record

of f" was used to compute each record in. the Customer Order Pile e'

and the Customer Payment Pile e". By grouping and reorganizing two
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processes, E and F, the individual records for e' and e" can be com-

puted from a record of f" (which was just computed from a record of g).

Consequently, only the storage for a record of f" is necessary in

comparison to storage for the entire file. In addition, it may be

possible *to eliminate the record of f" and compute those for e' and e"

directly from g. Such a procedure requires the following subtasks:

1. Combining processes into logically and syntactically correct

modules

2. Comprehensive control and data flow analysis.

3. Restructuring the module to merge data passes (or loops).

4. Elimination of unnecessary files (or data).

V. PROCESS GROUPING DETERMINATION

The problem of assigning the various processes to modules is a

complex combinatorial problem complicated by the fact that savings

from reorganization cannot be predetermined. However, prediction of

savings in transport volume which result from process groupings can

be accomplished.

The G Matrix relates the profitable binary groupings; i.e., those

in which a savings in transport volume is incurred.

An interaction matrix is created to reflect the transport volume

savings encountered in a binary grouping of processes., This savings

matrix or S matrix is computed as follows:

Sij = Sji = vk 2 if (eik = -1 and ejk = 1)or(eik = 1 and

k=1

if -.1 and e 1.

0 otherwise.

eik jk

-61]

In

Where k is the file subscript of the Incidence Matrix.

If the binary grouping is immediately infeasible, we maintain the

potential savings we would encounter if the grouping is made at a later

time.

The TV savings which result from a .grouping of n processes is

then reflected in the sum of the savings of binary grornings of the n

processes. (NOTE: There are n(,( combinations of proces0000
2

Thus, our S matrix is presented in rigure 16 for the example problem

given in Figure 2.
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A B D E F

A - 20 0 100 0 0

B 20 - 0 0' 20 0

C 0 0 0 20 0

D 100 0 0 0 20

E 0 20 20 0 40

F 0 0 0 20 40

Figure 16. Matrix of transport. savings for pairwise groupings
for the example of Figure 2.

TVS is the Transport Volume Savings function for any grouping M.

TVS (M) = S,

pr.cM, pr,3 cM

i <j

Thus, from above:

TVS (DEF) = S
DE

+ S
EF

+ S
DF

= 0 + 40 + 20 = 60

TVS (ABD) = S
AB

+
BD

+ S
AD = 20 + 0 + 100 = 120

Note that this short-cut method for computing Transport Volume

Savings (TVS) is based on the assumption that a file is input to no

more than two processes. If a file is input to three or more processes,

the Transport Volume Savings must be computed directly from the Inci-

dence Graph of the proposed design.

Transport Volume Savings is supplemented by gains occurring as a

result of reorganization.

The objective is to minimize transport volume subject to core

constraints and feasible grouping consideration. This may be stated

as follows:

If C(Mi) is the core requirement for module RG(Mi) and CT is the

core constraint,

C (Mi) < CT , 1 .....i < q

It is important to note the interaction effects encountered are

of a non-convex nature; there exidt local optima which are not

necessarily global optima; thus, to guarantee a global optimum, the

entire solution space must be considered.
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The grouping procedure was first formulated as a Quadratic

Assignment Algorithm [5] in order to implicitly truncate unprofitable

solutions from the solution space and facilitate speed of convergence

to a good solution. However, optimality cannot be guaranteed for

this problem is we formulated it using the Quadratic Assignment

Algorithm. The procesS grouping procedure described in the next

section is formulated as a straightforward enumeration scheme. The

number of feasible designs is not too large for problems of 50

processes or less whe., :e memory and precedence relationships are

used as constraints on Module size.

A. GENERATION OF FEASIBLE PROCESS GROUPINGS TO FORM MODULES

The G matrix is used to create a listing of binary groupings.

The binary pairs (i,j.) of the upper triangular portion of the matrix

are selected if gii = 1 and it is not true 'that ag, 3 pit and ro = 1.

The consequence of allowing the (i,j) pair into the pair list given the

above condition is the generation Of infeasible groupings. Consider

the following precedence graph of processes as shown in Figure 17.

Figure 17. Precedence graph of processes.

We observe that PAB
1 and rsc = 1 hold; thus, AC is eliminated from

the pair list; otherwise {AC,B} appears to be a feasible design, which

it is not. By eliminating the pair {AC) from the feasible list of

pairs, we create only feasible designs. (NOTE: {ABC) is still a

feasible grouping.)

Once a list of feasible pairs is created, feasible modules of

size 3, ...., n, are generated by the following algorithm.

A list Y' of feasible .groups of size k+1 is generated using the

list Y of groups of size k by selecting an element of Y and comparing it

with every element of the list of pairs and adding a process to the
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grouping if that process is in -a pair with.., -an element of the group and

no output of any process of the element of Y is input, or reachable as

input, to the process to be added to the grouping. This means that if

y c Y and pri y then y U pri is a feasible grouping if 3 prj c y 3

gii = 1 and for all prk c y if 1 prt y and It#i then pkt = 1 implies

rti # 1 and ptk = 1 implies rip, # 1.

This is to say that a process is added to the grouping if there

is no output'from a process of the group which is indirect input to

the candidate process; i.e., there is no process not in the grouping

which accepts output from the group and generates input to the candi-

date process. An example is shown in Figure 18 of the problems that

Figure 18. Illustration of Potential Grouping Problem.

can arise in the grouping procedure. If {A B C} is a grouping, then

we see that the grouping {A B C Dl violates our rules for acceptance

of the candidate D for pBE=1 and rED=1 and yet E X {A B CI and E#D.

Thus {A B C Dl is not a feasible grouping. We can see, however, thit

{A B C El and {A B C D E} are feasible groupings.

From the list of feasible pairs, all feasible triples are gene-

rated. Two pairs are grouped if they have one process in common. From

valid pairs and triples, designs of size n, are generated.

This procedure generates modules from size 2 up to n where n is

the number of elements of PR. The result is a list of all possible

feasible process groupings M0 with the exception of the individual

processes. Thus, in the example we call this listing B, and

ea.
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_
The set 1lm+1 of feasible modules
is initially empty.

..m+1
Create process groupings x
of size m+1 from groupings Ym
of size m and the list of
feasible process pairs.

A

yes

'V

es

20

no

/1.1N Select a pair Of

pr., pr. pal.; processes pri, prj

conidered for y? from the list of
feasible process pairs

If only one process
of the process pair
belongs to the m
size grouping y,
form a m+1 size
grouping y'. Add
pr y

Process grouping y'
is a possible program
module.

yno

k4-j

If y' is already a member of
im+1 then create another
program module.

Check core constraint for
program module y'.

Is there a precedence
violation with respect to the
m size process grouping y and
the candidate process pr,?
If a precedence violatioR
exists, then reject the
grouping y', where 1,1=y U prk.

Add the process grouping y'
to the set of feasible

program modules
ym4.1.

yes

00*.,,

prisYm
prj Y

no

no

es

3 prt t y

3 Pxkull and prt e

and r =l

Ilt+1 m+1
y'

Figure 19. Generation of Feasible Process Groupings To Form Modules.
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The set of feasible systems designs

a
m+1

is initially empty.

Create groupings 0
m+1

of size m+1 from groupings

0
m of size m.

m
+1

a 4-

yes

all b c B
4(sonsidered

. for Om?

If candidate module b has
a process in common with 0
reject the candidate grouping

Om U b.

Module grouping 0
m+1

is a
possible programming systems
design.

Select: Om c am

no

Select processing
grouping (module)

b from B
4
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Stop

If Om."' is already a member of

a
m+1 then create another grouping
of modules to form a new systems'
design.

IS there a precedence violation
with respect to the m size module

grouping Om and the candidate
module b? If a precedence
violation exists, then reject the

grouping 0
m+1

1 where 0
m+1

= 0
m

U b.

Add the module grouping Om."'
to the set of feasible systems

designs a"1.

3 c c B 3

C Om and C b

and Om precedes C and

C precedes b

Figure 20, Generation of Alternative System Designs
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{AB}
{AD}

{ EF }

=
{ABC}

B

{DEF}
{ABCD}

{ABCDEF}

22

the list of all feasible groupings M is the union of the set a and the

set PR or M = S U PR. See the flow chart of Figure 19.

B. GENERATION OF ALTERNATIVE SYSTEM DESIGNS

' A similar procedure is used to select all feasible combinations

of modules (process groupings) that form a cover for the programming

system PS. Note that all elements of B satisfy the system's core

constraint so modules may be combined freely so long as no modules

in the cover have any common processes. The core constraint of a

system is satisfied as long as the core requirement of the largest

program module in the design does not exceed the tonstraint.

The proce3ure seeks to generate sets Cam},M = 1, ...., s, where

a
m is a set that contains all possible combinations of m modules and

s < n is the maximum number of modules that can be combined. Clearly,

a1 = B. Proceeding by inductive definition, a
m+1 is generated from am.

To generate a
m+1

, for each element Om c am, em is Combined with any

element b c B for which b has no process in common with the modules

of em. Then, 0
m+1

= Om U b becomes an element of a
m+1

. This procedure

is shown in Figure 20.

Further, as above, there must he only direct precedence between

the set 8m and the candidate module b; i.e., the case as illustrated

in Figure 21 does not occur.

Figure 21. Illegal Grouping Situation.
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Thus, for example, if

{BC,AD} C a2 and {EF} e 13 and {BCIAD} {EF} = 0

Then {BC,AD,EF} E a241 = a3.

Further, if

{ABC} e a1 and {EF} e S and (ABC) n {EF} = 0

.then {ABC,EF} E al+1 =

Note in the first case a cover of PS is formed.

After all combinations have been enumerated, a cover 6 is formed

from each combination Om e am as follows: We let ek c ak =
{M1,

we,
ndtwhereNlieSandfeasibleIllodtae Mi 1

= (pro f 'of*, pr ). Mi
1

i
ni
i

contains n
i
processes .

Then the residual processes can be defined as:

b' . {pr} pr e [PR- U1 (M)] ; thus 6 = ek U b'.
j=1 1

In other words, a feasible design is any element OM of any am

combined with all ungrouped processes as individual modules. For

example, 6 = {ABCD, E, F) is a feasible design for the programming

system diagrammed in Figure 2.

. TIAANSPORT VOLUME SAVINGS CALCULATION

The transport volume savings-for any design can be calculated by

'examining each module of the design as stated earlier and the savings

for the design is the sum of the savings for any modules. Thus, if

6 = {M
1,

M2, M
q '

then the transport volume savings for 6 is

TVS (6)
....1191M1111141111111

4

prl c M1 .1 prk e Mi

. j <k

The optimal design with respect to transport volume savings can be

designated as follows:

6opt = MAX ( TVS (6) )

6
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The core requirements for a design can be designated as the maximum

requirements for any module of the design; thus, it is

Maximum [ C(M
1
), C(M

2
), C (M )] .

The list of designs are then sorted in ascending order by core and

descending order by transport volume savings and the x best designs

(highest transprrt volume savings) are saved for each range of core;

i.e., top ten for range 20K-30K bytes of memory, top ten for range

31K-40K bytes of memory, etc. The core constraint may be as a result

of a partition size or an arbitrary constraint on module size. The

number of designs (x) to save for each range of core memory is arbitrary.

VI. COMBINING PROCESSES

The combining of processes in Lo into program modules in Li re-

quires the translation of those processes into Li. This translation

can be made either before or after the processes are combined. How

ever, if the translation is made first, then the procedures for com-

bining program modules are over the same language as the reorganiza-

tion procedures. This would enable new processes to be added to

already reorganized module... Procedures necessary for combining modules

include those to resolve identifier conflicts, interface the modules

with respect to external files, and perform structural modifications

necessary to produce the desired syntactically and logically correct

module.

Nylin [6] has discussed techniques which have been used for the

implementation of these procedures. In addition, other techniques

can be used to take advantage of any commonality which may exist

between the modules being combined. Yershov [7,8] described techniques

to efficiently utilize storage by allowing certain variables to use the

same memory location. Similarly, algorithms exist for detecting common

data storage areas and to eliminate redundant procedure definitions f6).

Much of the control flow information necessary for reorganization

can be accomplished with existing techniques such as analysis using

Boolean connectivity matrices first described by Prosser (9], or the

interval method described by Cocke and Schwartz (10] and Allen MI,
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Techniques for additional control flow information which can be used in

reorganization are described by Nylin [6] . Existing techniques [12, 13,

14] can be used to compute variable "usage" information utilizing the

data gathered in the control flow analysis.

The control flow and data flow information procedures are neces-

sary to locate loops (data passes) which may be candidates to be merged.

Of particular interest are loop pairs in which one loop is always

executed the same number of times as a specific branch of the other.

Thus, one loop computes the control parameters for the other. If this

can be determined and if additional data flow information allows the

loops to be merged, one of the loops can be eliminate and its body

moved into the other loop. This procedure may include the replacement

of an induction variable as well as the redefinition of certain program

variables necessary a result of merging the loops. It should be

noted that the complexity of the control flow within either loop is not

a factor in the ability to merge them.

Once the loops are merged, it may be possible to apply subs...amp-

tion techniques [6,13] to eliminate unnecessary stores into variables.

That is, the definition of a particular variable (which could be the

internal representation of a data file) may be able to replace subse-

quent occurrences of that variable. Thus, due to the merging of two

loops (data passes), it is no longer necessary to maintain information

.
which is only utilized by a specific pass through the merged loop.

Hence, an intermediate file (used for communication between the loops)

can be eliminated.

Once a decisi&I made as to which processes are to ir: a module,

they must be integrated by some automatic procedure. This combining

of specific processes to form a program module that can be executed on

the target machine involves several steps. First, the processes must

be able to be represented in an intermediate language that has the

following attributes:

1. An ability to measure the memory required to implement the
processes on the target machine.

2. The ability to automatically analyze the grouped processes and
perform reorganization procedures on their loop and file structure.

3. The ability to map the grouped processes into the desired programs

on the target machine preserving their reorganized structure.
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It should be noted that the intermediate language (Problem Statement

Language) could be either the original language or the desired language

for the target machine. It may even be desirable to compile the final

grouping in the intermediate language to produce object code directly.

This could be especially advantageous if the processes are described

by a high-level problem statement language. That is, there exists no

need for any other level of documentation since new modifications to

the system would be made at the problem statement level. Thus, when

changes are made to the existing processes or new processes are added,

the final modular programming system can be automatically regenerated.

Clearly, this is necessary to guarantee that the system remains

optimal and that no errors are introduced by adding code to a module

consisting of multiple processes.

Once the processes are represented in the intermediate language

L
1,

they must be combined into a logically and syntactically correct

program module for L1. The program modules (processes represented in

L1) can be automatically combined to form larger modules in Ll. Those

multipass modules could be automatically analyzed; and, if possible,

reorganized to combine multiple passes over the same file. In addi-

tion, in some cases the file could also be eliminated. The elimination

of such files not only increases the efficiency of the resultant module

but it decreases the memory it requires (6).

In addition to the directed graph representation of the set of

programs, the following information is assumed to be available for

module reorganization.

Process documentation 4. File usage
2. Source deck or list of processes 5. Input and output test data
3. Operating instructions 6. Frequency of process cycles

VII. EXAMPLE
umenammissmwmos.....0.0

The example bel3w L5 a stem of processes which creates a

warehouse shipping schedule.

The input is considered to be a transaction file containing

Receiving Reports, Customer Orders, and Customer Payments. The

transactions are divided into a receiving file and a customer

transaction file.

The receiving reports are used to update the inventory on hand

file, while the customer orders and payments are separated and a

payment summary produced.

The Incidence Matrix for this example is shown in Figure 2.
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PROCESSES

A - Shipping Schedule Generator
B - Order file sorting for Scheduler
C - Customer Payment Summary Generator
D - Inventory Update
E - Separate Customer Payments from Customer Orders
F - Separate Receiving Report from Customer Transactions

FILES

a - Shipping Schedule Report
b - Customer orders sorted by item
c - Customer Payment Summary
d - Updated Inventory
e''- Customer Orders
e" - Customer Payments
f' - Receiving Report
f" - Customer Transaction
g - Warehouse Transaction
h - Old Inventory Master

The files e', e", and f' are described below:

27

RECEIVING REPORT (f')

Columns Data

CUSTOMER ORDER (e1)

Columns Data

1 - 2 'RV' 1 - 2 'CO'

3 - 7 Vendor Number 3 - 7 Customer Number

8 - 27 Vendor Name 8 - 27 Customer Name

28 - 47 Vendor Address 28 - 47 Customer Address

48 55 Value of Goods 48 - 55 Value of Goods

56 - 60 Component Number 56 - 60 Component Number

61 - 65 Quantity Received 61 - 65 Quantity Received

66 - 71 Date Received 66 - 71 Delivery Date

72 - 77 Blank 72 - 77 Order Number

78 - 79 Warehouse

CUSTOMER

Columns.

1 - 2

3 - 7

PAYMENT (e")

Data

'CP'
Customer Number

8 - 27 Customer Name
28 - 47 Customer Address
48 - 55 Amount Paid
56 - 71 Blank
72 - 77 Order Number

The P, R*, RI and G Matrices for the above example are given in Figures

3,4,5, and 6 respectively.
31.
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The transport volume savings Matrix S is given in Figure 16; thus, the

total transport volume for this example is 350 units. The procedure

detailed in Figure 18 was executed for CT=50 with the resultant module

groupings;

M
1

= (A,D)

M
2

= (B,C,E,F)

C(M
1

) = 50 < 50

C(M
2

) = 45 < 50

With the organizing completed, the final transport volume was 170.

This resulted in a savings of 180 units and only 40 units more than

the absolute minimum of 130 units. If the core constraint is relaxed,

the minimum transport volume is obtained when all processes are

grouped into a single module.

To illustrate combining processes into modules utilizing reorgani-

zation techniques, consider processes D, E, and F. Modules representing

each of these processes can be represented by the following COBOL pro-

cedure divisions.

PROCESS D

OPEN INPUT OLD-INVENTORY-FILE, RECEIVING-REPORT-FILE,
OUTPUT UPDATE-INVENTORY-FILE.

REWIND RECEIVING-REPORT-FILE.
LABEL. READ RECEIVING-REPORT-FILE AT END GO TO CLOSER.

PERFORM UPDATE INVENTORY-FILE.
GO TO LABEL.

CLOSER. CLOSE ALL FILES.

PROCESS E

OPEN INPUT CUSTOMER-TRANSACTION-FILE, OUTPUT CUSTOMER-PAYMENT-
FILE, CUSTOMER-ORDER-FILE.

REWIND CUSTOMER-TRANSACTION-FILE AT END GO TO CLOSER.
IF CODE OP CUSTOMER-TRANSACTION EQUAL 'P' THEN WRITE CUSTOMER-
PAYMENT-REC FROM CUSTOMER-TRANSACTION ELSE WRITE CUSTOMER-
ORDER-REC FROM CUSTOMER-TRANSACTION.
GO TO LABEL.

CLOSER. CLOSE ALL FILES.
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PROCESS F

OPEN INPUT WAREHOUSE-TRANSACTION-FILE, OUTPUT RECEIVING-REPORT-
FILE, CUSTOMER - TRANSACTION -FILE

REWIND WAREHOUSE-TRANSACTION-FILE
LABEL. READ WAREHOUSE-TRANSACTION-FILE AT END GO TO CLOSER.

IF CODE OF WAREHOUSE-TRANSACTION EQUAL 'R' THEN WRITE RECEIVING -

REPORT -RFC FROM WAREHOUSE-TRANSACTION ELSE WRITE CUSTOMER-
TRANSACTION-REC FROM WAREHOUSE-TRANSACTION. GO TO LABEL.

CLOSER. CLOSE ALL FILES.

By combining and reorganizing Processes E and F into one module,

the following integrated module is generated.

MODULE E-F

OPEN INPUT WAREHOUSE-TRANSACTION-FILE, OUTPUT RECEIVING-REPORT-
FILE, CUSTOMER-ORDER-FILE, CUSTOMER-PAYMENT-FILE.

REWIND WAREHOUSE-TRANSACTION-FILE.
LABEL. READ WAREHOUSE-TRANSACTION-FILE AT END GO TO CLOSER.

IF CODE OF WAREHOUSE-TRANSACTION EQUAL 'R' THEN WRITE RECEIVING-
REPORT-REC FROM WAREHOUSE-TRANSACTION ELSE IF CODE OF WAREHOUSE
TRANSACTION EQUAL 'P' THEN WRITE CUSTOMER-PAYMENT-REC FROM

WAREHOUSE-TRANSACTION.
WRITE CUSTOMER-ORDER-REC FROM WAREHOUSE-TRANSACTION.
GO TO LABEL.

CLOSER. CLOSE ALL FILES.

Thus, the processes are able to be combined with the elimination

of the Customer Transaction File (file f").

Similarly, Processes D and F can be combined and reorganized to

eliminate the Receiving Report File (file f'). The resultant module

is as follows:

MODUIIE 0 F

WIEN INPUT WAREHOUSE-TRANSACTION-FILE, OLD-INVENTORY-FILE,
OUTPUT CUSTOMER-TRANSACTION-FILE, OLD-INVENTORY-FILE.

REWIND WAREHOUSE-TRANSACTION -FILE.
LABEL. READ WAREHOUSE-TRANSACTION-FILE AT END GO TO CLOSER.

IF CODE OF WAREHOUSE-TRANSACTION EQUAL 'R' THEN UPDATE
INVENTORY-FILE ELSE WRITE CUSTOMER-TRANSACTION-REC FROM
WAREHOUSE-TRANSACTION. GO TO LAB1 L.

CLOSER. CLOSE ALL FILES.

The ability to combine Processes D and F (eliminating file f')

and E and P (eliminating file f ") does not guarantee that both files

can be eliminated by grouping Processes D, E, and F. That is, certain
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program variable dependencies existing between Processes D and E may

prohibit the reorganization of the total grouping. However, if such

dependencies do not exist, then Processes D, E, and F may be combined

and reorganized to produce the resultant module.

30

MODULE D E F

OPEN INPUT WAREHOUSE-TRANSACTION-FILE, OLD-INVENTORY-FILE,
OUTPUT OLD-INVENTORY-FILE, CUSTOMER-ORDER-FILE, CUSTOMER-
PAYMENT-PILE.

REWIND WAREHOUSE-TRANSACTION-FILE.
LABEL. READ WAREHOUSE-TRANSACTION-FILE AT END GO TO CLOSER.

IF CODE OF WAREHOUSE-TRANSACTION EQUAL 'R' THEN UPDATE- INVENTORY -

FILE ELSE
IF CODE OF WAREHOUSE-TRANSACTION EQUAL 'P' THEN WRITE CUSTOMER-

PAYMENT-REC FROM WAREHOUSE-TRANSACTION ELSE

WRITE CUSTOMER-ORDER-REC FROM WAREHOUSE-TRANSACTION. GO TO LABEL.

CLOSER. CLOSE ALL FILES.
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VIII. CONCLUSIONS

A methodology is described for the automatic design of a processIng

system initially defined in terms of logical processes or program modules.

Processes and files are grouped and reorganized in such a way as to

produce an optimal design with respect to a specific target machine.

Performance criteria for the optimal design is defined in terms of

transport volume savings and core memory requirements.

Starting with a graph theoretic representation of the interaction

between processes (or modules) and files, the methodology consists of

two components: (1) a generator of feasible alternatives and (2) a

procedure for reorganization and code generation for specific groupings.

The generator for the feasible alternatives uses an implicit enumeration

algorithm to optimize process groupings in an efficient manner. The

objective is to group processes into modules which minimize the inter-

action between modules while still satisfying the logical requirements

of the program and the physical constraints of the hardware. Finally;

after the program modules have 'been v?ecified, program and file reorgani-

zation will be performed to further optimize the design. Reorganization

includes the combination of similar data passes on the same file to

minimize transport volume and the merging of loops to enable elimination

of code and of intermediate data filt

The code generator will then accent the optimal program design and

produce an optimized source language program for the target machine.

Consequently, not only can an optimal design for the processing system

be generated; but due to reorganization techniques, the resultant modules

(defined from specific process groupings) may approach the computational

efficiency expected of an integrated program.

Although an automatic reorganizer has not been developed for COBOL,

one has been implemented for Pilot (a subset of Neliac) on a C.D.C.6500

at Purdue University. This language (Pilot) could represent the inter-

mediate language L1 into which processes written in COBOL could be

translated before they are combined and reorganized.

Another way in which this methodology could be used is to select

designs that are optimal with respect to a particular pricing scheme.

For example, the program design which may be executed the most effioient11
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(with respect to transport volume) on a specific configuration could

require main memory that would be disadvantageous to the user accorddaig

to a particular pricing scheme that penalizes the user for larger

memory requirements. By generating designs for various memory con-

straints, such alternative designs are available.

The methodology described in this paper could be used to break

up programs into modules or overlays and adds a new dimension to

program scheduling since we can now address the following question:

"What is the optimal size of a program module?"
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